ON THE THERMAL CONDUCTIVITY OF TWO-PHASE SYSTEMS

S. V. Stepanov UDC 536.21

Relationships are obtained which yield the upper and lower bounds of the coefficient of ther-
mal conductivity for statistically homogeneous two-phase systems that have an arbitrary
structure. '

The problem of determining the coefficient of thermal conductivity of two-phase systems as a func-
tion of the thermal conductivity coefficients of each phase has at present been solved exactly only for a
very limited class of systems having the simplest structure. The overwhelming majority of structures
permits only approximate solutions based on special stipulation of the temperature field in the system.
In this connection finding such estimates that would allow the range of possible values of the coefficient
of thermal conductivity to be found is of definite interest.

Let us consider a statistically homogeneous two-phase system. (Statistical homogeneity here is
understood to mean the following. If the system is partitioned into parts in such a way that the volume of
each part is extremely large compared with the microscopic inhomogeneity of the medium, then the average
values of the physical quantities characterizing the system must be identical for all the parts.) The
geometry of the phase domains is arbitrary. On the phase boundary ideal conditions for thermal contact
are realized (i.e., the temperature of the normal components of the thermal flux vector are continuous).

Let us define the coefficient of thermal conductivity A for a two-phase system by the relationship

(> =—hn (VT . (1)
Here and below it is assumed that summation takes place over doubly repeated indices. The angular

brackets indicate averaging over a physically infinitesimal volume satisfying the following two require-
ments:

a) a physically infinitesimal volume must be extremely large compared with the microscopic in-
homogeneities of the medium;

b) a physically infinitesimal volume must be extremely small compared with the macroscopic in-
homogeneities of the field (i.e., the average values of the physical quantities in this volume must
differ infinitesimally from the average values of these quantities in contiguous volumes.

For a statistically anisotropic system which does not have cubic symmetry it makes sense to speak
of the coefficient of thermal conductivity in a stipulated direction. Assume that this direction is charac-
terized by the unit vector n, Then the coefficient of thermal conductivity in the direction of n is defined by
the expression

A = Aiphsty. (2)

As is well known, in order to find the coefficient of thermal conductivity in a stipulated direction it is
necessary to specify the temperature gradient in this direction and to measure the quantity

IR 5
[<VT > ©

Taking Eq. (1) into account, it can easily be shown that Egs. (2) and (3) are equivalent.
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Let us choose the physically infinitesimal volume V in the form of a right cylinder oriented in the
direction of the vector n. The direction of 2 macroscopic temperature gradient for this volume will be
determined by the conditions on the boundary of the sample. It is clear that one can always stipulate
boundary conditions such that the vector (VT) coincides in direction with the vector n. This allows the
equation | (VT)| = (V,T) to be written. If we now take into account the fact that (q)y = (qap,), then

g g,dv
_ < Gn > — W . ( 4)
(vaT > jvanV
%)
Further on we shall require the inequality
b b b
[Fode { gdc <@ —a) [F@e@dx, (5)

which was derived by Chebyshev. Here f(x) and g(x) are integrable functions which simultaneously satisfy
the conditions

{ FEY < { &) > F@), 6)
g) < g gx)>g)
(x'and X" are any two points of the segment ab).
Inequality (5) changes its meaning
b b b
\ Fn)dx f g dx> (b —a) S f(x) g (¥ dx, @)

if the functions f(x) and g(x) are governed by the conditions

{ Fe) <F), or { > F(x7),
gy>g") g(x) < g

Let us arrange the coordinate system in such a way that the direction of the z axis coincides with
the direction of the vector n, and let us transfor Eq. (4) by the following two different methods:

The first method:
( Av,Tdxdy ) dz S' ( S Av.Tdxdy )dz

A = () (s) = ‘(1) (s) . . (9)
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Here the integration is carried out over the length (I) of the cylinder and the area (s) of its perpendicular
cross section. Using the fact that the resultant flux through the surface of the cylinder is zero, it can

easily be shown that the inequality
1 .
SR

) (s) (s) ) ()

1

7 f H‘ 9. (x, 4. 2) dxdy] dz — j q,(x, y, 2)dxdy

is fulfilled for any values of z which vary within the limits of the cylinder length. Then

S' v, Tdxdy ~1
h =1 s 0 |dz . 11
U ( [ vy ) Y
n - ®

Since the functions X(x, ¥, z) and V,T(x, y, z) satisfy conditions of the type (8) (the variable z is considered
as the parameter), then by analogy with Eq. (7) one can write
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v, Tdxdy < —l—j dxdy S‘VZdedy. (12)
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Comparing (11) and (12), we obtain

WP I N e (13)
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The second method:

" j g,dz (' v.ldz
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(s) (1) () (0

As a consequence of the fact that the macroscopic temperature gradient is directed along the cylinder
axis, the following inequality is valid for the quantity X VT, y, z)dz:
h
1
‘—5 “‘VZT x, 4, 2 dz] dxdy — g v.lT (x, ¥, 2)dz <<L5 H‘ v.T (%, y, 2)dz ]dxdy, (16) -
| s . s
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which is satisfied for any pairs of values x and y which vary within the limits of the domain (s). There-

fore,
v g
A= —1~ 4 dxd (17)
\ 5 4.4 dz Y. A

&
The functions q,(x, ¥, z) and (x, y, z)/i\~ are governed by conditions of the type (6) (the variables x and y
are treated as parameters); therefore, by analogy with (5) one can write
- 1 -
g‘ g, A Ydxdy > T \S‘ gdz s‘ Az (18)
G & it

Substituting this expression into (17), we obtain

dz -1
A 1 dxd
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Using Egs. (14) and (20), one can determine the upper and lower boundaries of the coefficient of thermal
conductivity of any statistically homogeneous two-phase system.

If Eq. (4) and the inequalities

Ay, TdV < ﬁdv y v TdV,

) Sy W
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Ay | q.dv 1)

(instead of (12) and (18)) were to be used directly in the derivation, then we would obtain the well-known
relationship

[I—P P

T ——]’1 <ALAD (1 —P) 11 ®p (22)
;\1(1) )‘1(2) TR ‘

Let us now show that the domain of values of A given by the relationships (14) and (20) lies inside
the old domain (22). For this purposewe make use of the well-known inequality

b
S LR e -

a,

b
which is valid if S f(z)dz > 0.

a

In Eq. (13) the quantity s‘ i(x, y, z)dxdy is a positive function of z. Comparing (13) and (23), we ob-
()

tain
/ -1 / S‘H‘ 9, 2 dxdy] dz
b — ‘. g =0 , , (24)
§ x (x Y, z) dxdy s g
where the expression at the right is
a® Ve 2@ Ve o (1—P)+a®p. (25)
1% 1%
Analogously, it may be shown that
l L (x, L, x, -1 1—P p 1

(s)

Thus, relationships (14) and (20) yield 2 more accurate estimate of the values of A than do the old rela-
tionships (23). However, in order to use the relationships (14) and (20) more information than previously
is required on the system.

Actually, whereas only the factor P appears in the expression (22), the parameters s,;(z) and I4(x, ¥)
reflecting the structural characteristics of the system participate in the new relationship. (For example,
in the case of matrix structures these parameters will depend on the shape of the inclusions and their
mutual disposition.)

For any specific structure the functions s;(z) and 7(x, y) may be written in analytic form, which
leads to estimates of the coefficient of thermal conductivity of this structure after they have been sub-
stituted into expressions (14) and (20). As an example, let us investigate the structure of a cube in a cubic
stack. Let A®) be the coefficient of thermal conductivity of the cubic inclusion. As a consequence of sym-
metry, all quantities in expressions (14) and (20) shall be referred to the unit cell. If the origin is placed
at the center of the cubic inclusion and the z axis is directed along an edge of the cube, then s (z) = 12 for
|z] >a/ 2 and s,(z) = L? — a®for |z| <a/ 2;1,(x,y) =L for |x| >a/2 or |y| > a/2,and I;(x, y) = L — a for
[x| < a/2, |yl < a/2. Substituting these expressions into (14) and (20) and integrating, we obtain

_~2\4__ \< (1 — P2/3) + 7\’(2)/}\’(1).132/3 (27)
AD T (1 =P Py AP (P P)

and
Ao (PP —P) 4290 1 P 4 P)
}\’(1) = P1/3 + ;\’(2)/%(1)_ (1 __Pl/3)
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Thus, in the particular case of the structure of a cube in a cubic stack we have arrived at the well-~
known estimates given by Frey [1] which he found on the basis of other notions. The relationship (27)
(having in mind the equality sign) was found somewhat later in [2] and is better known in the literature as
the Russel formula.

gy 1=1,2,3)
VT (i=1,2,3)
[(VTy]

(VT)n, {Qn

li(X; Y), Sl (Z)

NOTATION

is the thermal-flux vector (microscopic);

is the microscopic temperature gradient;

is the modulus of the macroscopic temperature gradient;

are the projections of the macroscopic temperature gradient and thermal-flux vector on-
to the direction of n; :

are the projections of the microscopic temperature gradient and thermal-flux vector onto
the direction of n;

in the domain occupied by the first phase;

in the domain occupied by the second phase;

are the coefficients of thermal conductivity in the first and second phases;

are the length and perpendicular cross-section area of the physically infinitesimal vol-
ume;

are the length and perpendicular cross-section area of the physically infinitesimal volume
assigned to the first phase;

ZZ(X9 Y) =1 _li(x9 Y)i

8y(z) = s — 54(2);

Vi

V2 =V —Vl;
P

L

a

is the volume occupied by the first phase;
is the volume concentration of the second phase;
is the parameter of the unit cell;

is the length of a cube edge.
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