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Relat ionships  a r e  obtained which yield the upper  and lower bounds of the coefficient  of t h e r -  
mal  conductivity for  s ta t i s t i ca l iy  homogeneous two-phase  s y s t e m s  that have an a r b i t r a r y  
s t ruc ture .  

The p rob lem of de termining  the coefficient of t he rma l  conductivity of two-phase  s y s t e m s  as a func- 
tion of the t he rma l  conductivity coeff icients  of each phase has at  p resen t  been solved exact ly  only for  a 
v e r y  l imited c lass  of s y s t e m s  having the s imples t  s t ruc ture .  The overwhelming ma jo r i t y  of s t ruc tu re s  
pe rmi t s  only approx imate  solutions based on special  s t ipulat ion of the t e m p e r a t u r e  field in the sys tem.  
In this connection finding such e s t ima te s  that would allow the range  of poss ible  values  of the coefficient 
of t he rma l  conductivity to be found is of definite in teres t .  

Let us consider  a s ta t i s t i ca l ly  homogeneous two-phase  sys tem.  (Statistical homogenei ty here  is 
understood to mean  the following. If the s y s t e m  is part i t ioned into par ts  in such a way that the volume of 
each par t  is ex t r eme ly  l a rge  compared  with the mic roscop ic  inhomogeneity of the medium,  then the ave rage  
values of the physical  quanti t ies  cha rac te r i z ing  the sy s t em mus t  be identical  for  a l l  the par ts . )  The 
geome t ry  of the phase domains  is a r b i t r a r y .  On the phase boundary ideal conditions for  t he rma l  contact 
a r e  rea l ized  (i.e., the t e m p e r a t u r e  of the normal  components  of the t he rma l  flux vec to r  a r e  continuous). 

Let  us define the coefficient  of t he rm a l  conductivity Xik for  a two-phase  sy s t em by the re la t ionship  

< qi } = - -  )~ih < v ~ T  } �9 (1)  

Here  and below it  is a s sumed  that summat ion  takes  place over  doubly repeated  indices.  The angular  
b racke t s  indicate averag ing  over  a physical ly  inf in i tes imal  volume sat isfying the following two r equ i r e -  
ments :  

a) a physically infinitesimal volume must be extremely large compared with the microscopic in- 
homogeneities of the medium; 

b) a physically infinitesimal volume must be extremely small compared with the macroscopic in- 
homogeneities of the field (i.e., the average values of the physical quantities in this volume must 
differ infinitesimally from the average values of these quantities in contiguous volumes. 

For a statistically anisotropic system which does not have cubic symmetry it makes sense to speak 
of the coefficient of thermal conductivity in a stipulated direction. Assume that this direction is charac- 
terized by the unit vector n. Then the coefficient of thermal conductivity in the direction of n is defined by 
the expression 

)~ = )~ihn~n~. (2) 

As is  well known, in o rder  to find the coefficient of t he rma l  conductivity i n n  st ipulated direct ion it is 
n e c e s s a r y  to specify  the t e m p e r a t u r e  gradient  in this d i rec t ion and to m e a s u r e  the quantity 

)~ - -  ( q > ~ (3) 
I < v T > [  

Taking Eq. (1) into account,  it can eas i ly  be shown that Eqs. (2) and (3) a r e  equivalent. 
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Let  us choose the physical ly inf ini tes imal  volume V in the fo rm of a right cylinder oriented in the 
di rect ion of the vec tor  n. The direct ion of a mac roscop i c  t e m p e r a t u r e  gradient  for  this volume will be 
de termined by the conditions on the boundary of the sample .  It is c lear  that one can always st ipulate 
boundary conditions such that  the vec tor  (VT) coincides in d i rec t ion with the vec tor  n. This  al lows the 
equation I (VT) [ = (VnT) to be writ ten.  If we now take into account the fact  that (q)n = (qn), then 

.[ q,flV 
= < qn ) = (v) 

( V , f  ) ~ vnTdV 
(V) 

(4) 

Fu r the r  on we shall  r equ i re  the inequali ty 

b b b 

j' : (,) d ,  S g (*) d~ < (b - -  ~) S: (*) g ( * ) 'u '  (5) 
a a a 

which was derived by Chebyshev. Here  f(x) and g(x) a r e  in tegrable  functions which s imul taneous ly  sa t is fy  
the conditions 

: (x') <: f (x"), or I f (x') >~ : (x"), (6) 
g (x') .< g (x") [ e (x') >~ g (x") 

(x' and x"  a r e  any two points of the segment  ab). 

Inequality (5) changes i ts  meaning 

b b b 

r ~ ~x) ax S e (x) d~ > (b - a) S t (x) e (x) ax, .] " 

a a 

i f  the functions f(x) and g(x) a r e  governed by the conditions 

{ f (x') .< : (x"), { f (x') ~/ f (x"), 
g (x')'>~ g (x") o~ g (x') .< g (x"). 

(7) 

(8) 

Let us a r r ange  the coordinate  s y s t e m  in such a way that the di rect ion of the z axis  coincides with 
the d i rec t ion of the vec tor  n, and let us t r ans fo r  Eq. (4) by the following two different  methods: 

The f i r s t  method: 

~, ~ ( t )  (s )  ~-- ( l )  (s )  

( 0  (~) (s) ( _ k s ! _ _  I d a  
J'~.wTdxdy ] 

( l )  (~) 

(9) 

Here  the in tegra t ion is ca r r i ed  out over  the length (l) of the cyl inder  and the a r ea  (s) of i ts  perpendicular  
c r o s s  section. Using the fact  that the resu l tan t  flux through the sur face  of the cyl inder  is zero,  it can 
eas i ly  be shown that  the inequality 

(t) (s) (s) (t) (s) 

( io) 

is  fulfilled for  any values of z which v a r y  witMn the l imi t s  of the cyl inder  length. Then 

. i s )  d z  . (11) 

( l)  (s) 

Since the functions ~(x, y, z) and VzT(X, y, z) sa t i s fy  conditions of the type (8) (the va r i ab le  z is considered 
as the pa ramete r ) ,  then by analogy with Eq. (7) one can wri te  
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~ -s S ~.dxdy.l vzTdxdg. 
(s) (s) (s) 

(12) 

Compar ing  (11) and (12), 

o r  

The second method: 

we obtain 

L < -s- 5 ~" (x, y, z) dxdy 
(l) (s) 

l dz ]-1. 
L ~<-s-[. f ~31'sl (z) + L(~'s2(z ) 

(l) 

(13) 

( 1 4 )  

t (t) dxdy ( ~ qflz ) dxdy J) qflz ,. ~ Vz Tdz 
m . )  _ m ( o  ( 1 5 )  

(s) (l) (s) ( t)  

As a consequence of the fact  that the mac roscop i c  t e m p e r a t u r e  gradient  is d i rected along the cylinder 
axis ,  the following inequali ty is valid for  the quantity S VzT(x '  y'  z)dz: 

(1) 

, (s)  (1) ( l )  (s) ( l )  

which is  sat isf ied for  any pa i r s  of values  x and y which v a r y  within the l imi ts  of the domain (s). T h e r e -  
fore ,  

)~ = 1 (o dxdy. (17) 
s , q~ L dz 

(s) (l) 

The functions qz(X, y, z) and (x, y, z ) / ~  a r e  governed by conditions of the type (6) (the va r i ab l e s  x and y 
a r e  t rea ted  as p a r a m e t e r s ) ;  there fore ,  by analogy with (5) one can wri te  

.f q~-ldxdy~j-~ S qzdz.f ~.-ldz. (18) 
(t) (t) (l) 

Substituting this express ion  into (17), we obtain 

dZ .1-1 

(s) (l) 

(19) 

o r  

) ~  IT f f ll(x')(l~ y) + 12(x')(~ y) ]-ldxdy - 
(s) 

(20) 

Using Eqs. (14) and (20), one can de te rmine  the upper  and lower boundar ies  of the coefficient of the rma l  
conductivity of any s ta t i s t i ca l ly  homogeneous two-phase  sys tem.  

If Eq. (4) and the inequali t ies  

t" ~v,~TdV .(. ~ VnrdV, 
(~) (v) (V) 
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> A_v .) ,f q.dv 
(v) (v) (v) 

(21) 

(instead of (12) and (18)) were  to be used d i rec t ly  in the derivation,  then we would obtain the well-known 
relat ionship 

~(~> + - - ~ -  -< ~ .< ~Y) (l - -  P) + ~(~P. (22) 

Let us now show that the domain of values of X given by the relat ionships (14) and (20) l ies  inside 
the old domain (22). For  this purposewe make use of the well-known inequality 

b 

~ (23) 

.I f (z) dz r 

a .  

b 
which is valid if ~ f(z)dz > 0. 

a 

tain 

In Eq. (13) the quantity ,l X(x, y, z)dxdy is a positive function of z. Comparing (13) and (23), we ob- 
(s) 

~' < -7" , f -~ (x, y, z) clxdy "~ 
( o (~s) 

s i 2 
(24) 

where the express ion at the r ight  is 

)o) V, _]_ )(=) V~ = )(,) (I - -  P) + ~(2) p .  (25) 
V V 

Analogously, it may be shown that 

-s- ,) L ~ o ~  ~- ~ (~) dxdy ~f ~ o----Y-- -}- ~ 3 -  �9 (26) 
(s) 

Thus, relat ionships (14) and (20) yield a more  accura te  es t imate  of the values of ~ than do the old r e l a -  
tionships (23). However, in o rder  to use the relat ionships (14) and (20) more  information than previously 
is required on the system. 

Actually, whereas  only the factor  P appears  in the express ion  (22), the pa ramete r s  sl(z) and/ l (x ,  y) 
ref lect ing the s t ructura l  charac te r i s t i c s  of the sys tem part icipate  in the new relationship.  (For example,  
in the case  of mat r ix  s t ruc tures  these pa rame te r s  will depend on the shape of the inclusions and their  
mutual disposition.) 

For  any specif ic  s t ruc ture  the functions sl(z ) and/ l (x ,  y) may be wri t ten in analytic form,  which 
leads to es t imates  of the coefficient of thermal  conductivity of this s t ruc ture  af ter  they have been sub- 
stituted into express ions  (14) and (20). As an example, let  us investigate the s t ruc ture  of a cube in a cubic 
stack. Let  ?t(2) be the coefficient of thermal  conductivity of the cubic inclusion. As a consequence of sym-  
metry ,  all quantities in express ions  (14) and (20) shall be r e f e r r e d  to the unit cell. If the origin is placed 
at the center  of the cubic inclusion and the z axis is d i rected along an edge of the cube, then sl(z ) = L 2 for 
Iz] > a / 2 a n d  sl(z ) --L 2 - a  2for  [z I < a /  2; /l(x, y) = L f o r  Ix] > a / 2  or l Yl > a / 2 ,  a n d / l ( x , y )  = L - a  for 
[xl < a / 2 ,  lY[ < a / 2 .  Substituting these express ions  into (14) and (20) and integrating, we obtain 

(1 - -  p2/a) _~ ~(2)/~(1).p2/3 (27) 
s "~ (1 - -  p2/a .+. p )  _~_ ~(~)/~0). (p=/3 - -  p)  

and 
(p1/3 __ p) _]_ ~(2)/~(U. (1 - -  p1/a _~_ p) 

~(1) ~-~ pl/3 + ~)/~(1).  (I - -  p1/3) (28) 
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Thus, in the par t icu la r  case  of the s t ruc tu re  of a cube in a cubic s tack we have a r r i ved  at the wel l -  
known es t ima tes  given by F r e y  [1] which he found on the bas i s  of other  notions. The re la t ionship  (27) 
(having in mind the equality sign) was found somewhat  l a t e r  in [2] and is be t te r  known in the l i t e ra tu re  as 
the Russe l  formula .  

qi (i = 1 , 2 , 3 )  
ViW (i = 1, 2, 3) 
I (VT>I 
(VT) n, (q>n 

VnT, qn 

f, = ~ (0  
f, = x(2) 
;~(~), ~,(2) 

l ,  S 

/l(x, y), s~(z) 

N O T A T I O N  

is the t he rma l - f l ux  vec tor  (microscopic) ;  
is the mic roscop i c  t e m p e r a t u r e  gradient;  
is the modulus of the mac roscop i c  t e m p e r a t u r e  gradient;  
a r e  the project ions  of the mac roscop i c  t e m p e r a t u r e  gradient  and the rma l - f lux  vec tor  on-  
to the d i rec t ion of n; 
a r e  the project ions  of the mic roscop ic  t e m p e r a t u r e  gradient  and the rma l - f lux  vector  onto 
the d i rec t ion  of n; 
in the domain occupied by the f i r s t  phase; 
in the domain occupied by the second phase; 
a r e  the coeff icients  of t he rma l  conductivity in the f i r s t  and second phases;  
a r e  the length and perpendicular  c r o s s - s e c t i o n  a r e a  of the physical ly  inf ini tes imal  vol -  
ume; 
a r e  the length and perpendicular  c r o s s - s e c t i o n  a rea  of the physical ly  inf ini tes imal  volume 
ass igned to the f i r s t  phase; 

/2(x, y) = l - ll(x, y); 
s 2 (z )  = s - s ,  ( z ) ;  

V1 
V 2 = V - V i; 
p 

L 

is the volume occupied by the f i r s t  phase; 

is the volume concentra t ion of the second phase; 
is the p a r a m e t e r  of the unit cell; 
is  the length of a cube edge. 

1. G. 
2. H. 

L I T E R A T U R E  C I T E D  

S. son F rey ,  Z. E lek t rochem. ,  38, 260 (1932). 
W. Russe l ,  J. Am. Ceram.  Soc., 18, No. 1 (1935). 

181 


